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Abstract

We propose a bio-inspired, force-based model of agents to replicate the dynamics of a group of preda-
tors attacking a swarm of prey in a bounded space. Our model uses a first-order Euler method with a
set of local metric-based interaction rules to implement a discrete time update process on a continuous
space. Novel approaches to boundary conditions and predator evasion are implemented. We show that
this set of simple update rules can generate complicated group chasing and evading strategies. We
then implement an original evolutionary adaptation mechanism on the prey and predator behavioural
parameters, to minimise or maximise the proportion of prey killed respectively. The parameter opti-
misation process was carried out using the BIPOP-CM-AES algorithm sequentially. Optimisation
resulted in continual oscillation between distinct strategies, without the emergence of a dominant

strategy for either species.
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1 Introduction

Collective motion is a broad term that encom-
passes many unique phenomena, where order
emerges from chaos. Examples include schooling
fish [1], flocking birds [2], swarming locusts [3] and
even human festival goers [4]. The most famous
model of active matter was proposed by Viscek et
al. in 1995 [5]. In this model, each particle updates
its direction at every time step, by aligning with its
neighbours in a radius of interaction. The particle
then moves at a constant speed in the new direc-
tion, providing an exceedingly simple heuristic to
explain the emergence of order, which defined a
starting point for many subsequent analyses.
Later, force-based models grew in popularity in
which agents and the environment impose forces
on one another much like interacting charged par-
ticles [6-9]. In particular, this allows agents to

vary their speed, unlike the original model pro-
posed by Viscek. These more complicated models
were applied to a variety of situations, including
predators hunting prey [6, 8, 9].

The dynamics of predators and prey play a cru-
cial role in collective motion, especially through
the methods by which prey evade their predators.
Research by Chen et al. has shown that when there
are multiple prey and a single predator, larger
groups of prey necessitate a stronger predator in
order to ensure a successful kill [9]. This may be
attributed to the confusion caused by having mul-
tiple targets, making it difficult for a predator to
focus on a single target. Another similar prob-
lem is modelling scenarios with multiple predators
pursuing a single prey. In one such case, with
the assumption that the prey was considerably
faster than the predators, it was demonstrated
that a simple set of forces allowed predators to



coordinate, greatly improving the success rate in
capturing prey [7].

Prior to development of a model, it is impor-
tant to characterise distances in which parti-
cles interact. Metric interaction, distance based
interactions, and topological interaction, a near-
est neighbours approach, are the most common
approaches in the literature. Kumar et al., pro-
vided an analysis of both approaches, which
motivated the derivation of our model [10]. The
addition of a vision cone is widely used, reducing
the agent’s field of view to emulate a species of
choice [11]. Our model is inspired by the dynamics
of Lemon Sharks hunting, which have been shown
to have very large vision cones, close to 360° [12],
with their prey also having near 360° vision [13].
For this reason, and for simplicity we do no not
include vision cones in our model.

It is believed that travelling collectively can
allow for large groups to transfer information
between pack members quickly. This could be
information regarding a food source [14], migra-
tion [15, 16], or to escape a predator [17, 18].
A simplistic exploration of this phenomenon can
be found in Couzin et al., where they show that
only a very small proportion of informed individu-
als are required to achieve great accuracy in group
guidance [19].

Whilst much work has been done on mul-
tiple prey, single predator models [9] and vice
versa [7], research on multiple predator, many
prey systems is sparse. This situation is often
observed in nature, an example being the previ-
ously mentioned Lemon Shark hunting. The aim
of this paper is to develop a force-based bio-
inspired predator-prey model to describe these
scenarios. Following this, we employ an evolution-
ary approach to optimise evasion/capture for prey
and predators respectively.

In Section 2, we derive our model by defining
forces that act on each agent and the properties of
the space in which they interact. One such prop-
erty of the space which is particularly interesting
are the soft boundary conditions, which are a devi-
ation from the periodic boundary conditions used
by most models in the literature. Sections 3 and
4 describe the initial conditions of our model and
the method used to simulate it. Section 5 provides
an overview of the different behaviours of agents
observed within our model, which change based

on our choices of force coefficients. Various mea-
sures are also provided to help understand these
behaviours, building an intuition of the dynam-
ics within the parameter space of the model. In
Section 6, we define a strategy to allow prey and
predators to update their behaviour, minimising
or maximising the amount of prey captured in
a simulation. The results of these optimisations
are discussed in Section 7, providing interesting
behaviour from our simple set of update rules,
such as predators lining up to shepherd prey into
the boundaries to get kills. We end the paper with
a conclusion of our results and discussion future
work in Section 8.

2 Model

We employ a two-dimensional model and consider
it comparable to a two-dimensional projection of
hunting in three-dimensional shallows. The lack of
depth does not allow for significant vertical chases
[7]. Each agent has a position x;(t) and a velocity
v;(t) and experiences an endogenous force F;(t)
due to local interactions over some radius r. Our
agents have full 360° vision and are point particles.
By Newton’s law

n™ =R, )
dXZ(t) o
“at vi(t) (2)

where m is the mass of the agent and p is the coef-
ficient of friction within the surrounding medium.
For simplicity, Chen, et al [9] and consequently
Chakraborty, et al [8] use the assumption that
m < p and reduce the system to first order. This
makes analytical results easier to derive. Instead,
we opt for a model where agents have momentum
and we drop the friction term, setting p = 0. In
real-world systems, predators and prey are often
vastly different masses. If friction were to be kept,
predators and prey would likely have different
mass-to-friction ratios, so picking these represen-
tative parameters to be impactful on the model
whilst maintaining realism may be difficult. The
aim of the project is to explore a simple abstract
model for predator-prey dynamics, rather than
developing a high-level model for a specific sys-
tem. Since we drop the friction terms, the mass



m for each of predator and prey can be absorbed
into the force coefficients.

In the previous approaches, agents only move
while experiencing a force and will slow down
to stationary when no force is applied; here,
agents maintain their velocity in the absence of a
force. We also enforce maximum velocities vPI<Y

max’
vPred and accelerations aP'sy, aP™d a natural lim-
itation. For any real-world system characteristic
length and time scales can be chosen as desired to
arrive at our non-dimensionalised model. For the
purposes of this report we have chosen the charac-
teristic length scale to be equal to the prey’s vision
radius and characteristic time scale to be defined
by their maximum velocity, as such we always take
these values to be one. Other choices are available,
however, and as long as they are consistent, this
model with dimensionless terms will apply.

2.1 Prey Forces

Let E and C be the sets of prey (Escapers) and
predator (Chaser) agents within our model respec-
tively. For a prey agent, i € E, we break down our
force term into seven components,

_ align attract repulse
Fi=Fp +F " +F ¢
disalign repulse
+F, ¢ +F, ¢ (3)
+ Fibound + Finoise

Many of these contributing forces are com-
mon among the literature, for example, Viscek’s
seminal paper on a constant speed self-propelled
system [5] had a similar alignment term emulating
an escapers desire to travel with their kind. The
attraction, prey-prey and prey-predator repulsion
were implemented by Chen et al., as a simple
force-based model for predator-prey interaction
[9]. Attraction and prey-prey repulsion imitate a
fishes desire to be near their kind, but not too
close, and prey-predator repulsion emulates a prey
desire to flee from a nearby predator. The bound-
ary, noise and disalignment forces are inspired by
the boundary zig-zag and predictive forces imple-
mented by Janosov et al., in their analysis of a
multiple predator single prey system [7]. The zig-
zag force is a stochastic evading behaviour, which
attempts to travel at some rotation from the flee-
ing direction, to prevent predator tactics, similar

to a noise term. The disalignment term is novel
and attempts to emulate the predictive capabili-
ties of agents, pushing the escapers to turn away
from where the chasers are going to be.

Within our model, we also include a radius of
interaction for prey rg and predators rc. Agents
only experience forces from other agents within
this radius. We denote the radius of interaction
of an individual agent i by r;. While some of our
forces decay in magnitude with the distance of
interaction eliminating the need for this radius of
interaction, limiting the radius will later allow us
to take advantage of grids when simulating the
model, leading to much cheaper computations. For
an agent ¢ we denote by

Ni=[{jeE||x;—xi| <ri}l
M; =|{je€C|lx; —xi| <}

the number of prey and predator agents within its
vision radius respectively.

We define the forces for agent-to-agent inter-
actions used in our model as follows:
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The noise term is a draw from a normal distribu-
tion with variance o2. The term for disalignment
with predators, w is a vector perpendicular to
the average velocity of the nearby predators. In
particular if

1 M;
dzizX]’—Xi, (5)
M;



is the displacement vector from our prey to the
centre of mass of the nearby predators and

a:MiZ_Zvj. (6)

the average velocity of the nearby predators then
v 1 w. Moreover, we choose the direction such
that d-w < 0, so that the prey turn in the direction
away from the predators. We set the magnitude
of w equal to that of the average predator veloc-
ity and as such average predator velocity acts as
a scaling factor. We will describe the force due to
boundary separately as it warrants a longer dis-
cussion. Regardless, there are still a few things
to note here. For one, prey alignment would be
more accurately called prey velocity matching.
This is a stronger condition where agents seek to
match both direction and speed [10]. The choice
of prey attraction and repulsion terms are consis-
tent with the minimal model proposed by Chen et
al. [9]. Notably, when 8 = v the repulsion term is
stronger than the attraction term within a radius
of one, due to the quadratic term on the denomi-
nator, and is weaker outside of this radius. Thus,
B and v can be chosen to fix the distance where
repulsion turns to attraction. The predator repul-
sion term is also found in the minimal model [9].
The predator disalignment term is not one dis-
cussed in the literature we have reviewed, though
similar terms have been proposed, such as a zig-
zag term [7]. We find that the addition of this term
facilitates some interesting behaviour such as bet-
ter cohesion and survivability when being chased
by a faster predator.

2.2 Predator Forces

For a predator, i € C, we have a force term as
follows

Fi _ F‘aéi’gn + F_aétract + F.rgpulse (7)
1, 1, 1,
+ F'agract + F_bound + F_noise
1, i i
Again we leave the discussion of the boundary

force for later and list the forces arising due to
agent interactions below.
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The predator forces are designed to mirror that
of the prey, with equivalent but inverse represen-
tation for all terms apart from disalignment and
prey attraction. Predators do not have a disalign-
ment term in the interest of simplicity, although
in a future addition to the model a predictive
capability similar to Janosov et al., could provide
an interesting extension [7]. Notice the denomi-
nator on the prey attraction is a cubic term, as
found in the minimal model [9], meaning that the
largest contribution to this force is from the prey
closest to the predator. This is effectively mak-
ing the force selective; the predator will target
close lone prey over far-off packs. However, once
near several prey, the direction of the closest one
may change quickly over a short time frame, leav-
ing the predator unable to focus on a single prey.
This is known heuristically as a confusion effect.
Other authors such as Mohapatra and Mahapa-
tra handle the selection and confusion effect more
explicitly [6], whereas we opt not to for simplicity.
We assume that when a prey enters a given radius
of a predator, k,, they are killed and removed from
the simulation. We also implement a kill cool down
7, during which a predator is forbidden from mak-
ing another kill, though they still experience the
same forces.

2.3 Boundary Conditions

Instead of using periodic boundary conditions typ-
ical to most flocking models, we use a bounded
domain and soft boundaries in particular. This
is to replicate hunting in areas close to shore-
lines or where indefinite escape directly away from



a predator is infeasible, but a hard wall is not
realistic.

In our L x L space, we have a boundary radius
rp in which prey and predators experience a repul-
sive force away from the boundary. An example
force, acting on the z = 0 boundary, is given by

d
(Fibound)x = max(amaxv |F’L|) <1 + cos <7’;)> ’
b

(9)
where d is the distance from the x = 0 bound-
ary. The form of this is chosen such that the force
becomes increasingly dominant the closer to the
boundary the agent is, similar to the soft bound-
ary defined in Janosov et al. [7]. This creates more
realistic boundary scenarios, where agents start
turning away from the boundary as they approach,
instead of bouncing or reflecting off. To ensure
our agents never collide with a boundary we can
define a worst-case scenario to calculate a bound-
ary radius sufficient to repel them fully. Consider
the z = 0 boundary and an agent crossing x =7
experiencing —F;e, + Oey, i.e a force perpendic-
ular to the boundary. Including boundary forces,
the total force the agent experiences is

Ff = max(amax, F3) (1 + cos (m)) — F;. (10)

Ty

The worst-case scenario is when |F;| > amax. To
observe this, note that the function is continuous
in F; and consider the point x = %. Then

F? = max(amax, Fi) — F; (11)

which is minimized when |F;| > amax. In this case,
our force is then given by

F” = cos (m) F;. (12)

Ty

Until z = % our agents can still be accelerat-
ing towards the boundary. At that point, there is
no force on them. When calculating velocity, we

impose the condition that |F;| < amax.

dv . T
o = Win (cos (ﬁ;) Fi,amax> (13)

dx
— 14
il (14)
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— % _ Zhmin (cos <7m;> Fi;amax) (15)
de v Th

This is a separable system, which we can impose
the boundary condition v(%) = —Umax. The
solution is given by

F; ap,
9 . i OAmax 2
V7 + rbmln(?a 2 ) ~ Ymax

. Ty . T
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The smallest boundary radius is when v(0) = 0,

i.e. the agent just avoids touching the boundary.
This yields

’U2

max , 16
min(L:, Smax) 16)
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T !

Ty =

which is largest when F; is minimized, but since
we assumed |Fj| > amax, wWe get a worst-case
boundary radius of

7T7)2

ry = Lmax (17)

amax

3 Simulation Method

To simulate the model we use a first-order forward
Euler method, for the time-stepping, subject to
maximum accelerations and velocities.

vi(t+ At) = vi(t) + At-Fi(t + At)  (18)

where we use notation

T = |—min {l2], Tmax} - (20)
x

x
|
Despite our model incorporating several
parameters, it is important to note that they may
be adjusted according to preferences and attempts
could be made to match them experimentally to
a real predator-prey system.

3.1 Enhancing Code Performance

At each time step, each agent must ascertain
which of the other agents are within its vision
area. To this end, a grid was implemented over the
domain, with each grid-space having length equal



Notation ‘ Parameter
N Number of Prey
M Number of Predators
N; Subset of N within vision radius of agent
M; Subset of M within vision radius of agent ¢
a, B,v,d,k | Constant prey force coefficients
a,b,c,d Constant predator force coefficients
o Variance of noise
F; Force experienced by agent
Vi Agent ¢’s velocity
X; Agent ¢’s position
At Time step
L Domain height and width
rE Prey vision radius
ro Predator vision radius
T Soft boundary radius
abiay Max acceleration for prey
ag,r;f(i Max acceleration for predators
vy Max velocity for prey
mergg Max velocity for predators
T Kill cooldown time
Tk Kill radius

Table 1: Nomenclature: The definitions and corre-

sponding of all parameters in the model.

to the prey’s vision radius. This vastly reduces
computational complexity, as we are guaranteed
to find all agents that are within our vision area
just by in checking our grid-space and those neigh-
bouring it. This strategy does add an additional
step of calculating whether each agent changes it’s
grid-space after their position is updated.

After initial testing in Python, the model
was coded using the Rust programming language,
which allowed for larger scale simulations, real-
time graphical rendering and parallelisation for
the CPU-intensive behaviour optimisation dis-
cussed in Section 6. The main performance benefit
of Rust comes from compile time interpretation
rather than dynamic interpretation, as used in
Python. Furthermore, Rust’s memory handling
allows for more efficient memory usage by enforc-
ing a system of ownership at compile time instead
of relying on a garbage collector as in Python. The
trade-off for this increase in performance is a lan-
guage that has a steeper learning curve and longer
development times, however, by making the switch
from Python, we improved the performance of our
code 10,000’s of times.!

LA more detailed explanation of the performance benefits of
Rust is unfortunately beyond the scope of this project. More
information on the Rust programming language can be found
in [20].

Initial Conditions
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Fig. 1: One randomised set of initial conditions
for a simulation of the model. Prey and predators
are represented by red and black polygons respec-
tively. The boundary length is shown along the
edges.

4 Initial Conditions

In our simulations, we start with N prey is
positioned randomly within [0, L] x [0, %] and
M predators positioned randomly within [0, L] x
[%, ], see Figure 1. These conditions ensure that
there are very few Kkills within the initial time
steps due to prey and predators being randomly
being adjacent. It also ensures prey cannot see a
predator at the start of the simulation in all set-
tings we consider (L > 10), emulating predators
finding a group of prey. Each agent is started at
unit (the maximum prey) velocity, facing random
directions, so as to not add any bias to our system.
As a possible adaptation to the model, a smaller
initial velocity may better emulate a resting shoal
off fish unaware of an oncoming predator.

5 Exploring the Model

5.1 Categorization of Behaviours

In systems without predators, we can categorise
different observable behaviour patterns relating
to the coefficients 5 and ~ of prey attraction
and repulsion respectively. Here we assume that
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Fig. 2: Qualitative agent behaviour types observed when varying the centering and repulsion coefficients
of our forces, with 7 = 1. Snapshots of models are displayed in each section with corresponding parameter

values.

« is positive, so prey have some desire to match
velocities. For @ <« 1, we can observe swarm-
ing, though this is more frequently observed as
an insectoid behaviour pattern [3]. We consider a
periodic space and the effect of prey entering the
vision radius of each other. The phase space is
shown in Figure 2.

In expansion, agents are repelled away from
each other regardless of the distance of interaction.
In a bounded space, this amounts to filling the
space as uniformly as possible. In flocking, there
is a “Goldilocks” zone within the vision radii; out-
side the zone, prey are drawn together but inside
they are repelled. Over long time periods, our
flocks become circular due to the nature of the
forces. In balling, prey wish to compact as much as
possible. In reality, there should be some volume
exclusion but since our prey are point particles,
there is no issue with them becoming arbitrar-
ily close together. In cliques, we see another
“Goldilocks” zone with the opposite effect; inside

the zone causes prey to be drawn in further and
outside you are repelled. This leads to very tight
collections of prey that act as a single cohesive
unit but do not form one mass.

The dashed line in Figure 2, intercepts at [0,0]
irrespective of rg. The slope of this line is 1 for
rg = 1, although as rg varies, the slope and order
of this curve changes. Our model does not produce
milling, a common behaviour pattern observed in
fish. One way this can be produced by an agent
based model is to weigh visual information such
that fore agents are given more precedence than
aft agents, an exemplar continuous transition is
given by 1+ cos() [21].

5.2 Measures

To understand certain behaviours, we need met-
rics to discuss the model. An order parameter is
some measure of how ordered the system is: a
mapping of physical shpace to a parameter space.
Usually, they are invariant under some symmetry



(reflection, rotation, translation). We have three
order parameters, the average velocity, the polar-
ization and the group number.

The average speed of the prey in the system is
given by

1 X
Vg i (21)
and the polarization:
N
>
|vil

i=1

1
N

P= (22)

Because our prey are allowed different speeds, we
take the unit vector in the direction of movement.
A polarization of zero means that particles are
randomly oriented, whereas one means that all
particles are travelling in the same direction.

The average number of groups of prey present
at a given point in time is calculated using
Density-Based Spatial Clustering of applications
with noise (DBSCAN) [22]. DBSCAN is a widely
used clustering algorithm?, it provides an eas-
ily understood heuristic, and fast implementation
in O(nlogn). DBSCAN uses 3 point identifiers:
Core, Periphery and Noise. DBSCAN takes the
inputs €, the radius of a neighbourhood and n,
the minimum number of agents in a group, and
identifies groups using the following heuristic:

e [f there are n points within a distance € of a
point x, x is a core point

e [f a point z is within a distance € of a core point,
but does not fulfil the criteria of a core point it
is a periphery.

e [f a point x is not within a distance e¢ of any
core nodes, it is referred to as a noise point.

We then use this classification to calculate the
number of independent sets of cores at each time
step, i.e., the number of groups.

5.3 Without Predators

We can now use these measures to help us under-
stand the different behaviour categories shown in
Figure 2, for both soft and periodic boundary con-
ditions. Figure 3 shows each measure over time

2While the efficiency and efficacy have been questioned in
high-dimensional complex spaces recently [23] this is not an
issue in our case of a simple 2D space.

for each behaviour category and boundary con-
dition. From this, we can observe the following
differences and similarities between periodic and
soft boundary conditions:

1. In general, measures on simulations with peri-
odic boundary conditions have much smoother
lines. This implies that periodic boundary con-
ditions result in much less stochastic simula-
tions compared to soft boundary conditions.

2. Polarization increases at a slower rate for soft
boundary conditions. This is due to the bound-
aries forcing the agents to turn around, decreas-
ing the polarization. We also see a periodicity
to the dips as large groups all hit the boundary
at similar times.

3. The average speed increases over time, at a sim-
ilar rate, for both periodic and soft boundary
conditions.

4. The group number for each behaviour is con-
sistent between periodic and soft boundary
conditions. This implies that neither boundary
condition provides a significant advantage to
help agents form groups.

We can also use Figure 3 to observe the
following about the different behaviour categories:

1. The group number for Expansion converges to
0 in both cases. This is due to the prey expand-
ing to fill the space and not being considered a
group as there is too much space between them.

2. Expansion is the only behaviour to have an
average speed that is decreasing over time. This
is due to the prey uniformly filling the space
and then being held in place by repulsive forces
from all of the prey surrounding them.

3. Balling is the behaviour that sees the steepest
increase in average speed. Balling has a nega-
tive repulsion and a positive centering as seen
in Figure 2, meaning these two forces are point-
ing in the same direction. This cohesion may
be part of the reason we see the prey increasing
their average speed at a faster rate, as there is
less cancellation between the force components.

5.4 Difference between
Disalignment and Repulsion
In Figure 4, we observe a single predator attacking

a flock. In the different simulations, the prey only
have one of the escape forces active and we can
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Fig. 3: Examples of our metrics, simulated for different behaviours outlined in the collective patterns
phase diagram 2, with periodic and soft boundary conditions. The metrics included averaged polarization,
speed and group number plots from 100 simulations in periodic boundary conditions (top), and soft
boundary conditions (bottom) with N =400, M = 0, L = 30,7y = 2, tmax = 300, At = %. The parameter
sets for the behaviours was o = 1, 8 = £0.5,vy = +0.05.

observe different behaviour. With only repulsion,
the escaping prey form a circular fan around the
predator. The prey directly in front of the predator
will continue escaping parallel to the predator and
so would likely be caught by a faster predator. The
wake produced does not widen rapidly, and for a
larger r, may allow the flock to reform. In con-
trast, the disalignment term splits a flock into two;
no prey run directly away from the predator. This
has a stronger impact on the adjacent prey and
produces a more lasting effect as the wave of high-
speed prey involves different agents over time:
the number of prey involved is different between
the strategies. Against a predator with a large
turning circle, this could be a highly efficient strat-
egy. Conversely, wise predators may co-operate to
encircle a group of prey akin to a sheepdog, where
the nature of travelling perpendicular may allow
prey to be compressed and herded.

We can introduce a measure of success for
predators, the proportion of prey killed within a
certain time frame. This a better metric than the
time taken to kill a fixed proportion of prey as
that may never occur.

In Figure 5(a), we first notice that when a
predator-evasive strategy is implemented, the prey
are harvested at a slower rate than when no strat-
egy is used. This is a useful model validation.
Next, we see that the rate of predation over time

is mostly linear until the number of prey alive
is considerably smaller. This is likely due to the
remaining prey being hard to locate: when there
is more prey targets are abundant. Finally, we can
note the strength of each strategy, repulsion is
better than disalignment, but even better is the
combination, they are complementary strategies.

When these terms are combined, situations can
occur like Figure 5(b). There are no prey in the
immediate vicinity of the predator and a small
wake behind that is getting refilled by prey. One
observed behaviour is fountaining, where prey peel
off and away from predators, and re-fill the space
behind.

5.5 Predator Flocking

The only behaviour turned on for the predator
was attraction to prey. This can lead to situations
in which predators chase the same prey, reducing
their efficacy. Instead, we can introduce the align-
ment, attraction and repulsion between predators,
i.e, allow them to flock. This is the main novelty
of our group research project: flocking predators
may be able to herd prey in a confined space.

In Figure 5(d) and 5(c), we see shepherding
is an observable behaviour in our system. Notice
the different separation distance between preda-
tors affects the dynamics of the prey’s escape



(b) Disalignment

Fig. 4: Repulsion causes the prey to fan out and
disalignment causes group splitting in front of
the predator. Predators are larger and depicted
in black, prey follow a speed-based colour map-
ping where pure blue means they are stationary
and pure red represents travelling at maximum
speed. This colour scheme is retained throughout
the report. In (a) « =1, § =1 and all other prey
coefficients equal 0. In (b) & = 1, kK = 1 and all
other prey coefficients equal 0.

trajectories. There are situations in which the
prey becomes trapped between two predators and
there is confusion between prey: cooperation is
difficult as there are multiple competing mes-
sages. An interesting question is what proportion
of prey should be allowed to “filter” through the
gaps of the predators. If they are too close, then
prey may fountain and peel off towards the edge,
splitting the large flock into smaller ones, leav-
ing the predators to choose which to follow, or
split and be less effective. Excessively wide gaps
mean there is no benefit of shepherding: prey can
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escape through the gaps leaving predators flocking
towards a pitiful meal.

We can glimpse the situation at the boundary
in Figure 5(e). The prey wish to avoid beaching
themselves on the edge of the area whilst also
avoiding being caught and so can slip into the
soft boundary. However, now there are competing
signals about which direction to travel and infor-
mation propagation becomes hard, it is every prey
for themselves. This situation is where we expect
more deaths to occur when prey and predators
flock.

6 Learning Behaviour

We are now prepared to ask a natural question:
what parameters minimize or maximize preda-
tion? In this section, we attempt to find a set
of behaviour parameters from which both preda-
tors and prey would not choose to deviate given
the other species’ behaviour. We fix the spatial
and physical parameters of our system, and alter-
natively allow predators and prey to ‘learn’ an
optimal behavioural parameter set to improve the
predation in their favour. This repeated process
allows us to understand the transient behaviour
of our system, the trajectory through which our
agents evolve.

Our attempt to mimic natural evolutionary
dynamics uses the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) [24], a stochastic,
derivative-free method. Our lack of prior knowl-
edge on the shape of our solution space makes
CMA-ES’s flexibility to non-linear and non-convex
problems very useful. This algorithm belongs to
a family known as evolutionary strategies, which
are inspired by natural selection. Parameter sets
(individuals) are randomly defined, simulated and
are allowed to reproduce based on their relative fit-
ness, i.e., their objective function evaluation. This
process allows evolutionary strategies to optimise
for the given system, by employing mutation and
recombination operators of the given parameter
set. A random sampling approach is implemented
on the state space of our parameters in CMA-ES
and a maximum likelihood approach is employed
on these samples to create a multi-dimensional
Gaussian distribution on our parameter set. The
resultant distribution can then improve sampling
efficiency.
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Fig. 5: (a) Number of prey left alive over time, showing the value of the prey-predator repulsion and
disalignment coefficients, with each coefficient providing a positive effect in evasion. For N = 400, M =
27, L = 30, r, = 2, rp, = 0.05, tx = 0.5, with prey parameters a = 1, § = 0.5, v = 0.05, § €
{0,1}, x € {0,1} and predator parameters a = 1, b = 0, ¢ = 0. Fountaining is a behaviour seen in shoals
of fish reacting to a predator, which our model displays in Figure (b). Predators Shepherding the prey
by moving in parallel through the shoal can be seen in Figure (¢) and (d). The simulation in (c¢) was run
with a lower value of v than (d), decreasing the distance between aligning predators. When prey who
are being shepherded hit the boundary, they spread due to opposing boundary and predator repulsion
forces. Multiple groups spreading synchronously on the boundary causes confusion from opposing forces,
allowing predators to attack, as in Figure (e).

Black-box optimisers such as CMA-ES may depending on modality [26], with a strong empha-

converge to local optima in the presence of multi- sis on generating a global approximation to our
modality or high levels of uncertainty [25]. To mit- solution.

igate this, we employ the bi-population (BIPOP)

restart strategy [26], which uses two interlaced Testing Regimes and Scenarios

restarting regimes with varying sample sizes. This
alternative strategy has been shown to produce
between linear and quadratic convergence rates,

In preliminary testing, we found that prey would
sometimes optimise to repel from any agent inside
its vision radius (expansion behaviour as in Figure
2). In a high-density setting, despite this strong
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Regime Parameters
pred
Slow Predators v};:il 0.75
max 1
pred 1
Equal Predators max
max
pred
Fast Predators ‘;ﬁe’a 1.25
atnax 3
Scenario Parameters
i i L 10
High prey density Predators 3
i L 20
Med prey density Predators 12
i L 30
Low prey density Predators 27

Table 2: The regimes and scenarios
we employ, where we consider every
scenario for each regime.

repulsion, prey will fill the space and still interact
with one another as there are too many of them for
the areas of interaction to be mutually exclusive.
This means that they can still propagate infor-
mation about the predator throughout the space.
We hypothesised that this strategy may falter in
a low-density setting, in which prey spread out in
such a way that they no longer interact, prevent-
ing information transfer. As such, we define three
different scenarios in which to train our agents,
high, medium and low-density scenarios, (4, 1, g
prey per unit area). This is achieved by fixing the
N = 400 and varying the domain length, L =
10, 20, and 30. Predator density was kept constant,
3 predators per 100 units of area. When explor-
ing the model, we found that predators could
catch prey despite having a much lower maximum
speed Vmax, pred- As such, we define three regimes,
in which predators’ maximum velocity and accel-
eration are changed relative to the prey, which
remains fixed. This leads to a total of nine dif-
ferent settings for optimisation. See Table 2 for a
summary of the changing variables and Table 3
for a summary of what we fixed.

In each setting prey and predators have their
parameters uniformly set to 0. Simulations are ran
for T = 300, At = % and the average predation
over 30 simulations is recorded. This is considered
to be one objective function evaluation. We bound
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Parameter  Value
N 400
Ty 2
prey 1
max
ahay 2
rE 1
ro 2
T 0.5
- 0.05
At 0.05
o 0.05
Table 3: Fixed
parameter values
chosen for strategy
evolution,  please

refer to Table 1 for
an explanation of
notation.

our parameter space for each parameter to [—1,1],
which nullifies an agent’s ability to unboundedly
increase a parameter to artificially maintain an
acceleration of aymax. The BIPOP-CMA-ES algo-
rithm performs constrained optimisation alterna-
tively between maximizing predation for predator
parameters and minimizing predation for prey
parameters. We allow our optimiser 1000 total
function evaluations per optimisation step of a
parameter step. We call this parameter set update
an epoch, and iterate each regime and scenario for
4 epochs. The aim is to provide an insight into the
effect space and predator physical constraints have
on chasing and escaping strategies. This method
does not quite mirror reality: predator-prey inter-
actions usually evolve simultaneously, yet we still
hope our alternative update approach can provide
some interesting qualitative behaviour.

7 Results

7.1 Sequential Optimisation of
Predator-Prey Strategies

Interestingly, no dominating strategy is observed
across any regimes or scenarios. For only the
regime with faster predators and lower prey den-
sity does the level of predation appear to converge
to a steady state, Figure 6. All other scenarios dis-
play sporadic behaviour with high variance, as in
the first graph of Figure 6, when L = 10, or seem-
ingly periodic behaviour, as in the second graph in
Figure 6, when L = 20. It is possible that a larger
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Fig. 6: Final predation levels after each optimisation step, showing transient behaviour. Predation refers
to the proportion of prey remaining after 300 units of time of simulation, with the optimised parameter
sets, averaged over 30 simulations. After each optimisation step this predation is shown, for the regime
of slow predators, medium-speed predators, and fast predators.

number of epochs will ensure convergence. Nev-
ertheless, the optimisations’ transient behaviour
shows interesting dynamics. A prime example is
the slow predator regime being optimised in the
large state space (L = 30):

® Predator Optimise 1: The predators favour
chasing the prey as the prey have no force to
evade®.

® Prey Optimise 1: The prey then increase
repulsion to fill the space and improve the trans-
fer of information through the flock (expansion
as in Figure 2).

® Predator Optimise 2: To counteract this, the
predators align and reduce attraction to the
prey. This sweeping and shepherding behaviour
as in Figure 5(d) then allows groups of predators
to catch prey at the boundaries.

® Prey Optimise 2: The prey increase attrac-
tion to each other, creating tight packs of prey.
These packs can slip between sweeping preda-
tors, unlike when prey had a higher repulsion
term.

® Predator Optimise 3: The predators revert
back to chasing prey to counteract the balling
strategy and the cycle repeats.

This cycle between distinct and contrasting
behaviours is prevalent throughout our regimes,
with many ‘jumps’ in total predation coming when
an easily refutable strategy arises. These refutable

3Due to a lack of friction and force coefficients our prey by
in large maintain their velocities and the predators get the
majority of their kills in the half of the domain where they
started, see figure Al in the appendix.
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strategies seem to be highly unstable and can be
seen to oscillate for the above case. In section 7.3,
we will optimise this scenario further to attempt
to understand if the oscillatory behaviour persists.

The medium-speed predators in L = 30
seemed to converge to a steady predation value
for 2 epochs, before significantly changing, shown
in the second image of Figure 6. This is likely
due to a relatively flat optimisation space, where
many parameter sets have a very similar predation
level. Selecting a seemingly strong parameter set
can allow the other species to spike predation and
break out of pseudo-steady-state. This is because
the optimisation is a “best” response to a given
parameter set, as opposed to a best response to all
parameter sets. This dynamic adds more doubt on
the truth of our steady states in the fast regime,
requiring more optimisations to resolve.

7.2 Observed Strategies and their
Counters

The emerging cyclic pattern in predation between
hyper optimised strategies is often found to be:
prey expansion, predators sweeping, prey balling,
predators chasing, etc. The results of this qualita-
tive cycle can be easily observed in simulation and
became viable through our discrete optimisation
process, with each response being highly tailored
to the current environment.

Prey Expansion

In many cases where predators weigh chasing the
prey highly, a large repulsion from neighbouring



prey can allow spread out flocks to pass informa-
tion quickly on the whereabouts of predators.

Predator Sweeping

When prey spread to fill the space in many cases
the best recourse is for predators to reduce their
coeflicient of prey attraction, and instead favour
alignment. This causes predators to travel in a
line, and shepherd prey to the boundary. At
the boundary the prey now experiences repulsive
forces from the boundary, predator and prey on all
sides preventing them from performing collective
escape. From Figure 7, we can see predators catch
most of their prey at the boundaries when imple-
menting this strategy. In this case, predators also
favour repulsion with each other, ensuring they
could shepherd a large quantity of fish together.
Notice there are “hotter” and “colder” areas on
the top and bottom boundary. This is due to the
spacing of the predators.

Prey Balling

Predator sweeping took advantage of the prey’s
desire to repel each other. To optimise against
this, the prey favour attraction with their neigh-
bours, creating dense balls of prey who all align.
Balling allows prey to slip between the sweeping
prey without getting caught at the boundaries.
The heatmap of death positions in Figure 8, has
many more prey being caught in the middle of the
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Fig. 7: Most deaths are located at the top and
bottom of our boundary, while prey implement a
balling strategy. The probability density of death
occurring at a given location in our simulation
state space, averaged from 5,000 simulations.
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Fig. 8: Deaths more uniformly spread than sweep-
ing, with a high proportion occurring at the
corners. The probability of death occurring at each
position, in a 100x 100 grid of our simulation state
space. This was averaged from 5,000 simulations.

space than during the sweep. Although in most
cases, the flocks must get stuck in a corner to be
caught by the sweeping predators.

Predator Chasing

In many cases the optimal reaction to prey balling
was for prey to return to chasing and aligning
to catch the dense flocks of prey. In the case,
where predators are faster they can remain inside
the flock and continuously catch prey. Whereas, a
slower predator must use team work with aligning
and repulsion terms to catch the flock. In many
cases this repeats the cycle.

7.3 Continued Strategy Evolution
for Interesting Scenarios

As previously mentioned we see a qualitative
dichotomy in optimisation results between our fast
and slow predators in L = 30 space; the predation
oscillating in the regime with slower predators,
and the predation seemingly converging in sim-
ulations with fast predators. This is something
we want to explore further. Our sample size of
4 epochs is too small to understand the limiting
behaviour of these systems and so we continued
these interesting cases for 20 epochs. We increased
the number of total objective function evaluations
allowed to the optimiser to 2000 per step, and
increased the simulations per function evaluation



to 80, to better ensure the optimality of the out-
put parameters. In Figure 9 we create a box plot
for the successive changes to predation relative to
the mean predation from optimisation to optimi-
sation and we do this for both the slow and fast
regimes. As we can see, predation varies greatly
for slow predators and much less for fast predators
(and even the absolute change is greater for slow
predators, see Figure A3 in the appendix). It is
also the case that the predation oscillates around
a mean value in both cases instead of drifting
over time, see Figure A2 in the appendix. Interest-
ingly, however, the Euclidean difference between
consecutive parameter sets does not converge in
either regime as shown in Figure 10. Even though
predation levels show a stark contrast between
convergence and oscillation, neither regime finds a
dominant strategy and so continually changes its
parameter set. We can attempt to illustrate this
dichotomy in behaviours using several metrics,
such as the previously defined average number of
groups present or the average speed of prey. We
choose average speed as opposed to velocity as the
scenarios of interest contain 27 predators chasing
400 prey, causing a lot of disorder in all cases.
The results can be found in Figure 11. We see

1.51

1.0

Change in Predation

—_—

Slow Fast
Physical Parameters

0.01

Fig. 9: A box plot of the change in predation value
relative to the mean predation value for successive
optimisations for both the fast and slow predator
regimes. The slow regime provides a much higher
variance in the final predation.
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Fig. 10: A box plot of the Euclidean distance
between parameter sets in successive epochs for
both the slow and fast regimes. Note this is epoch
to epoch for both predator and prey parameters
and is mot comparing successive prey parame-
ter sets to predator ones. The rate of change of
subsequent parameter sets is similar among both
regimes.

a consistent average speed of prey across opti-
misations in the fast regime in contrast to the
oscillatory results in the slow regime. Further,
there are strong oscillations in the average group
number for the slow regime and much softer vari-
ations for the fast regime. It is worth pointing out
that in the slow regimes, the oscillations move in
sync for both metrics, and the period of oscilla-
tion is fairly consistent, generally jumping with
each prey optimisation. If we plot the prey-to-prey
attraction and repulsion terms of our prey for each
epoch on our phase portrait in Figure 2 we end up
with Figure 12. Here we can see that in the fast
regime prey always prefer to ball or flock, however
in the slow regime we get two distinct groups of
behaviours where about half the time the prey are
balling and the other half the prey are expand-
ing. This gives further credence to our observation
that there seem to be oscillations in behaviour in
the slow regimes and less so in the fast regimes.
Notice that the centering when expanding is very
minimal. We conjecture that increasing the cen-
tering further (to expand more strongly) would
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Fig. 11: We see apparent switching of dynamics between two distinct states in the slow regime and
convergence with long-period, small-amplitude oscillations in the fast regime. This figure displays the
average speed and group number of prey, using the parameter values after each optimisation step, from
the fast and slow regimes, averaged over 100 simulations. The dashed line in the bottom left graph

represents the maximum predator velocity.

be detrimental as it would overpower the align-
ment term used to propagate information, leading
to higher predation. The distribution of balling is
comparatively rather varied.

It is also surprising that in Figure 11 we can
see that prey have a slower average speed in the
fast regime. This is indicative of the fact that our
model has momentum: it is easier to change direc-
tion (and thus react to a predator) at a lower
speed. Travelling at maximum speed is not useful
when a predator can outrun you. Conversely, we
see that in the slow regime, the average speed of
prey is at most at quick as the predators. Beyond
this speed, there are no forces that will maintain
acceleration for long periods of time.

7.4 Regression Analysis

In this section, we consider the two extended
runs with their heterogeneous behaviour and seek
to quantitatively identify consistent responses in
behaviour. To this end, we wish to perform a mul-
tiple linear regression analysis for each predator
coeflicient, as a function of all the prey coeflicients
they have just optimised against and then vice
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versa, using the data from both extended runs.
Take a for example, the coefficient of the preda-
tor attraction to prey force as in equations (8),
and «, 3,7, 6, k, the optimised prey coefficients as
in equations (4). We are trying to find k; and its
corresponding significance, for j = 0,...,5 in the
following equation;

a=ko+kioo+ kaf + k3y+ kid + ksk (23)

7.4.1 Significant Results

We start by looking for correlations in how the
predators optimise their parameters given the
previous prey optimisation. For each of a,b,c,d,
as in equations (8), we do a multiple regres-
sion on the prey parameters «,f,7,d,k, as in
equations (4). As predators optimise first, we can-
not include their first optimisation, leaving us with
a total of 38 data points to work with. The high-
dimensionality of our system, with limited data,
reduces the odds of finding statistically significant
correlation coefficients. We deem a correlation
coefficient is statistically significant if there is
less than a 5% chance of observing the data.
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Fig. 12: Bouncing between behaviours in opti-
misation of the slow regime, but not in the fast.
Parameter values returned from successive optimi-
sation steps plotted on the phase plane described

in Figure 2, L = 30.

Although, if there is no correlation between the
variables in question, the 95% confidence interval
for the corresponding correlation coefficient will
not include zero. We include the significant cor-
relations in Table 4. This suggests that predators
are less likely to chase prey (a decrease in d),
when prey repel each other more (an increase in
7). Although, predators are more likely to chase
prey (an increase in d), when prey dis-align from
the predators more (an increase in ). We also see
that predators are more likely to repel from one
another when prey do the opposite (an increase in
¢, in response to increases and decreases in 5 and
~ respectively).

Repeating this method for prey, we consider
how «, 3,7, 6, k after a prey optimisation are cor-
related to a,b,c,d. Which results in the second
half of the results in Table 4. Both results here
can be summarised as the more predators chase,
the more prey spread out. This is already enough
to give a sense of back-and-forth behaviour opti-
misation, we see that prey centering encourages
predators to chase more, which in turn encourages
prey to spread out again.

7.4.2 Limitations of the Regression
Analysis

Multiple linear regression assumes that input
parameters are not correlated to each other and
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Dependent  Independent  Coefficient  P-value
c B8 0.230 0.000
y -0.257 0.000
d ¥ -0.287 0.018
K 0.348 0.003
B8 d -1.344 0.001
~ d 0.965 0.000

Table 4: Force coefficients of predator and
prey that are statistically significantly cor-
related with force coefficients of prey and
predator (equations (4) and (8)) respectively
following a multiple regression analysis.

therefore can be less effective at predicting the sig-
nificance of the correlation between our indepen-
dent and dependent variables. This issue known as
co-linearity. To test for this, we can calculate the
Variance Inflation Factor (VIF) of the parameters
that we are fitting to [27]. The minimum possible
VIF is one and a VIF of at least five is consid-
ered to be indicative of critical levels of co-linearity
between the current parameter and the others. If
we find values greater than five we can perform
the regression without the highly co-linear vari-
able(s). See the results in Table 5, for the prey and
predator parameters. Note that two variables can
be reasonably strongly correlated and still have
a low VIF in regard to the entire system, this is
the case for the prey-to-prey repulsion parame-
ter and the prey-to-prey attraction parameter. A
variable with a high VIF, for example, the repul-
sion from predator parameter is highly correlated
with the other variables in the system, this could
be for example, because it is desirable to main-
tain a certain ratio between forces. See Table Al
in the appendix, for the regression results once
we restrict our independent parameters to a sub-
set that is not highly correlated. In summary,
however, the variables that were statistically sig-
nificant stay so, meaning we should not feel that
we need to change our previous conclusions. The
fact we do not see strong trends is not surprising
or a cause for concern, given both our relatively
small amount of data and the fact that the param-
eter sets change a lot from epoch to epoch as in
Figure 10. The possible disparity between both
regimes may also affect this.



Coefficient ‘ VIF ‘ ‘ Coefficient ‘ VIF
« 19.9 a 11.0
B 1.9 1.6 b 1.2 1.1
0% 4.5 4.0 c 1.8 1.8
1 28.5 d 11.7 1.7
K 8.4 3.9

Table 5: VIF values for sets of parameters. The
first column for all the listed parameters and
the second for a restriction to some maximal
subset for which the VIFs are no higher than 5
chosen to include the variables in Table 4.

8 Conclusion

During our review of collective motion, we delve
into the sparsely researched dynamics of multi-
ple predator, many prey systems. Our model is
primarily based on the force-based approaches
common in the literature [7, 9], but deviates by
the inclusion of a soft boundary condition and
predator disalignment. Following this, we provide
a short characterisation of prey behaviours by the
relative strength of repulsion and centering terms.
We introduce various measures to analyse the dif-
ferences in these behaviours and our choice of a
soft boundary.

After developing an understanding of our
model, we implement an evolutionary adaptation
mechanism to find optimal predator-chasing and
prey-survival strategies. We did this by sequen-
tially applying the BIPOP-CMA-ES algorithm,
optimising predator and prey behaviour in turn.
Boad analyses varying the spatial and physical
constraints on our agents provided two interesting
settings, which we consider in more detail. Both
of these settings are in the low-density scenario
on a large domain but have different predator
regimes, one using predators that were slower than
the prey and the other predators that were faster.
In the slow predator case, successive optimisa-
tions lead to large regular oscillations in predation,
Figure 9. We observe distinct cycling in prey and
predator behaviour in response to one another,
made clear by tracking several order parameters,
Figure 11. We also categorise behaviours on the
phase diagram 12, where prey behaviour oscil-
lates between expansion and balling. On the other
hand, when predators are faster than the prey, we
find prey optimisations have a negligible effect on
the success of predators, Figure 9. The stability
of predation values in this scenario is mirrored in

18

the convergence of our metrics after each optimi-
sation step, 11 and the identification of a single
behaviour, balling, on our phase diagram 12. It is
highly interesting that in neither scenario do we
see convergence to a specific parameter set, Figure
10, although it is clear that specific behaviours are
being optimised for.

Three natural extensions of the model are
to extend the space to thee-dimensions, reduce
the vision cone to be less that 360° and to
introduce friction. These would model a more
realistic scenario, though the added work may
not provide distinctly new results. The latter is
likely the direction that will provide the greatest
change. The noise term ensures the model is non-
deterministic, but can arbitrarily cause agents to
slowly accelerate over time. As we kept this term
small, ¢ = 0.05, we do not believe it to have
a significant effect, but one could perform a for-
mal analysis to explore to what extent it hask.
There is scope to adapt the model into a replicator
system, where agents can reproduce and conse-
quently mutate, which provides an alternative
evolutionary method to CMA-ES.
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Appendix A

In Figure Al, prey have not optimised meaning
their force coefficients are zero. This results in
no escaping or avoiding predators meaning the
majority of deaths are caused in one half of the
space, corresponding to where the predators start.
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Fig. A1l: Heatmap of deaths after initial predator
optimisation. L = 30, slow regime.

In Figure A2 we can see that the relative
variation of predation in the slow regime is sig-
nificantly larger than that of the fast regime.
Furthermore, the predation value has a very short
burn-in period before reaching its transient state.
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Fig. A2: Convergence of final predation in the fast
and slow regimes. Slow predators are represented
in blue and fast in orange.

In Figure A3, we can see that slow predators
still exhibit a larger absolute change in predation
between optimisations, even if not normalised by
the mean, as shown in Figure 9.
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Fig. A3: A box plot of the absolute change in
predation between successive optimisations. The
slow and fast regimes are shown in blue and orange
respectively.

Dependent  Independent  Coefficient  P-value
B 0.222 0.000
¢ ¥ -0.251 0.000
d ol -0.296 0.010
K 0.344 0.002
B d -1.342 0.001
5 d 0.966 0.000

Table A1l: Statistically significant correla-
tions of force coefficients (equations (4) and
(8)) between predator to prey responses and
vice versa. This is done using multiple linear
regression analysis excluding highly colinear
variables.
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